Prati
Chen Liu
Chen Liu
Potvrđena adresa e-pošte na cityu.edu.hk - Početna stranica
Naslov
Citirano
Citirano
Godina
Finding Mixed Nash Equilibria of Generative Adversarial Networks
YP Hsieh, C Liu, V Cevher
International Conference on Machine Learning (ICML) 2019, 2018
592018
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
C Liu, M Salzmann, T Lin, R Tomioka, S Süsstrunk
Neural Information Processing Systems (NeurIPS) 2020, 2020
472020
On Certifying Non-uniform Bound against Adversarial Attacks
C Liu, R Tomioka, V Cevher
International Conference on Machine Learning (ICML) 2019, 2019
212019
Consistent 3D Rendering in Medical Imaging
C Liu, S Miao, K Petkov, S Sudarsky, D Yu, T Mansi
EP Patent EP3,373,245, 2018
9*2018
Training Provably Robust Models by Polyhedral Envelope Regularization
C Liu, M Salzmann, S Süsstrunk
IEEE Transactions on Neural Networks and Learning Systems, 2021
62021
Consistent 3D rendering in medical imaging
K Petkov, C Liu, S Miao, S Sudarsky, D Yu, T Mansi
US Patent 10,957,098, 2021
42021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
C Liu, Z Huang, M Salzmann, T Zhang, S Süsstrunk
arXiv preprint arXiv:2112.07324, 2021
32021
Fast Adversarial Training with Adaptive Step Size
Z Huang, Y Fan, C Liu, W Zhang, Y Zhang, M Salzmann, S Süsstrunk, ...
arXiv preprint arXiv:2206.02417, 2022
22022
Robust Binary Models by Pruning Randomly-initialized Networks
C Liu, Z Zhao, S Süsstrunk, M Salzmann
Neural Information Processing Systems (NeurIPS) 2022, 2022
12022
Towards Verifiable, Generalizable and Efficient Robust Deep Neural Networks.
C Liu
EPFL, 2022
2022
Improving Adversarial Defense with Self-supervised Test-time Fine-tuning
Z Huang, C Liu, M Salzmann, S Süsstrunk, T Zhang
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–11