Follow
Geoffrey CHINOT
Geoffrey CHINOT
Postdoc at ETH Zurich
Verified email at stat.math.ethz.ch - Homepage
Title
Cited by
Cited by
Year
Robust statistical learning with Lipschitz and convex loss functions
G Chinot, G Lecué, M Lerasle
Probability Theory and related fields 176 (3), 897-940, 2020
52*2020
Gradient descent can learn less over-parameterized two-layer neural networks on classification problems
A Nitanda, G Chinot, T Suzuki
arXiv preprint arXiv:1905.09870, 2019
52*2019
On the robustness of the minimum interpolator
G Chinot, M Lerasle
arXiv preprint arXiv:2003.05838, 2020
31*2020
On the robustness of minimum norm interpolators and regularized empirical risk minimizers
G Chinot, M Löffler, S van de Geer
The Annals of Statistics 50 (4), 2306-2333, 2022
28*2022
Robust high dimensional learning for Lipschitz and convex losses
C Geoffrey, L Guillaume, L Matthieu
Journal of Machine Learning Research 21 (233), 1-47, 2020
212020
ERM and RERM are optimal estimators for regression problems when malicious outliers corrupt the labels
G Chinot
arXiv preprint arXiv:1910.10923, 2019
92019
AdaBoost and robust one-bit compressed sensing
G Chinot, F Kuchelmeister, M Löffler, S van de Geer
Mathematical Statistics and Learning 5 (1), 117-158, 2022
72022
Robust learning and complexity dependent bounds for regularized problems
G Chinot
arXiv preprint arXiv:1902.02238, 2019
32019
Minimum ℓ1 norm interpolation via basis pursuit is robust to errors
G Chinot, M Löffler, S van de Geer
arXiv preprint arXiv:2012.00807, 2020
22020
Localization methods with applications to robust learning and interpolation
G Chinot
Institut Polytechnique de Paris, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–10