Tong Wang
Tong Wang
Microsoft Research AI4Science
Potvrđena adresa e-pošte na - Početna stranica
Protein structure prediction beyond AlphaFold
GW Wei
Nature Machine Intelligence 1 (8), 336-337, 2019
Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction
J Lan, X He, Y Ren, Z Wang, H Zhou, S Fan, C Zhu, D Liu, B Shao, TY Liu, ...
Cell research 32 (6), 593-595, 2022
Improved fragment sampling for ab initio protein structure prediction using deep neural networks
T Wang, Y Qiao, W Ding, W Mao, Y Zhou, H Gong
Nature Machine Intelligence 1 (8), 347-355, 2019
A single whey acidic protein domain containing protein (SWD) inhibits bacteria invasion and dissemination in shrimp Marsupenaeus japonicus
HS Jiang, C Sun, T Wang, XF Zhao, JX Wang
Fish & shellfish immunology 35 (2), 310-318, 2013
Loss of Spike N370 glycosylation as an important evolutionary event for the enhanced infectivity of SARS-CoV-2
S Zhang, Q Liang, X He, C Zhao, W Ren, Z Yang, Z Wang, Q Ding, ...
Cell research 32 (3), 315-318, 2022
Direct molecular conformation generation
J Zhu, Y Xia, C Liu, L Wu, S Xie, Y Wang, T Wang, T Qin, W Zhou, H Li, ...
arXiv preprint arXiv:2202.01356, 2022
Structural and computational insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction
J Lan, X He, Y Ren, Z Wang, H Zhou, S Fan, C Zhu, D Liu, B Shao, TY Liu, ...
BioRxiv, 2022.01. 03.474855, 2022
Exploring the Regulatory Function of the N‐terminal Domain of SARS‐CoV‐2 Spike Protein through Molecular Dynamics Simulation
Y Li, T Wang, J Zhang, B Shao, H Gong, Y Wang, X He, S Liu, TY Liu
Advanced theory and simulations 4 (10), 2100152, 2021
LRFragLib: an effective algorithm to identify fragments for de novo protein structure prediction
T Wang, Y Yang, Y Zhou, H Gong
Bioinformatics 33 (5), 677-684, 2017
DSN-DDI: an accurate and generalized framework for drug–drug interaction prediction by dual-view representation learning
Z Li, S Zhu, B Shao, X Zeng, T Wang, TY Liu
Briefings in Bioinformatics 24 (1), bbac597, 2023
ViSNet: a scalable and accurate geometric deep learning potential for molecular dynamics simulation
Y Wang, S Li, X He, M Li, Z Wang, N Zheng, B Shao, T Wang, TY Liu
arXiv preprint arXiv:2210.16518, 2022
Identification of residue pairing in interacting β-strands from a predicted residue contact map
W Mao, T Wang, W Zhang, H Gong
BMC bioinformatics 19, 1-19, 2018
Improved drug–target interaction prediction with intermolecular graph transformer
S Liu, Y Wang, Y Deng, L He, B Shao, J Yin, N Zheng, TY Liu, T Wang
Briefings in Bioinformatics 23 (5), bbac162, 2022
SAMF: a self-adaptive protein modeling framework
W Ding, Q Xu, S Liu, T Wang, B Shao, H Gong, TY Liu
Bioinformatics 37 (22), 4075-4082, 2021
Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation
Y Li, Y Wang, L Huang, H Yang, X Wei, J Zhang, T Wang, Z Wang, B Shao, ...
arXiv preprint arXiv:2304.13542, 2023
An ensemble of VisNet, Transformer-M, and pretraining models for molecular property prediction in OGB Large-Scale Challenge@ NeurIPS 2022
Y Wang, S Li, T Wang, Z Wang, X He, B Shao, TY Liu
arXiv preprint arXiv:2211.12791, 2022
Multi-View Substructure Learning for Drug-Drug Interaction Prediction
Z Li, S Zhu, B Shao, TY Liu, X Zeng, T Wang
arXiv preprint arXiv:2203.14513, 2022
Complementing sequence-derived features with structural information extracted from fragment libraries for protein structure prediction
S Liu, T Wang, Q Xu, B Shao, J Yin, TY Liu
BMC bioinformatics 22 (1), 1-18, 2021
Improved fragment-based movement with LRFragLib for all-atom Ab initio protein folding
T Wang, H Gong, EI Shakhnovich
arXiv preprint arXiv:1906.05785, 2019
AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics
T Wang, X He, M Li, B Shao, TY Liu
Scientific Data 10 (1), 549, 2023
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20