Prati
Krishna Pillutla
Krishna Pillutla
Potvrđena adresa e-pošte na cs.washington.edu - Početna stranica
Naslov
Citirano
Citirano
Godina
Robust Aggregation for Federated Learning
K Pillutla, SM Kakade, Z Harchaoui
IEEE Transactions on Signal Processing 70, 1142 - 1154, 2022
2602022
MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers
K Pillutla, S Swayamdipta, R Zellers, J Thickstun, S Welleck, Y Choi, ...
Advances in Neural Information Processing Systems 34, 2021
882021
A Superquantile Approach to Federated Learning with Heterogeneous Devices
Y Laguel, K Pillutla, J Malick, Z Harchaoui
2021 55th Annual Conference on Information Sciences and Systems (CISS), 1-6, 2021
39*2021
A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares)
P Jain, SM Kakade, R Kidambi, P Netrapalli, VK Pillutla, A Sidford
arXiv preprint arXiv:1710.09430, 2017
302017
Federated learning with partial model personalization
K Pillutla, K Malik, AR Mohamed, M Rabbat, M Sanjabi, L Xiao
International Conference on Machine Learning, 17716-17758, 2022
292022
A Smoother Way to Train Structured Prediction Models
VK Pillutla, V Roulet, SM Kakade, Z Harchaoui
Advances in Neural Information Processing Systems 31, 2018
182018
Superquantiles at Work: Machine Learning Applications and Efficient Subgradient Computation
Y Laguel, K Pillutla, J Malick, Z Harchaoui
Set Valued and Variational Analysis, 2021
142021
Data driven resource allocation for distributed learning
T Dick, M Li, VK Pillutla, C White, N Balcan, A Smola
Artificial Intelligence and Statistics, 662-671, 2017
142017
Reconstructing cancer drug response networks using multitask learning
M Ruffalo, P Stojanov, VK Pillutla, R Varma, Z Bar-Joseph
BMC Systems Biology 11, 1-15, 2017
102017
Llc: Accurate, multi-purpose learnt low-dimensional binary codes
A Kusupati, M Wallingford, V Ramanujan, R Somani, JS Park, K Pillutla, ...
Advances in neural information processing systems 34, 23900-23913, 2021
72021
Divergence frontiers for generative models: Sample complexity, quantization effects, and frontier integrals
L Liu, K Pillutla, S Welleck, S Oh, Y Choi, Z Harchaoui
Advances in Neural Information Processing Systems 34, 12930-12942, 2021
52021
On Skewed Multi-dimensional Distributions: the FusionRP Model, Algorithms, and Discoveries
VK Pillutla, Z Fang, P Devineni, C Faloutsos, D Koutra, J Tang
Proceedings of the 2016 SIAM International Conference on Data Mining, 783-791, 2016
52016
Robust aggregation for federated learning. arXiv 2019
K Pillutla, SM Kakade, Z Harchaoui
arXiv preprint arXiv:1912.13445, 0
5
Federated learning with heterogeneous data: A superquantile optimization approach
K Pillutla, Y Laguel, J Malick, Z Harchaoui
arXiv preprint arXiv:2112.09429, 2021
42021
MAUVE Scores for Generative Models: Theory and Practice
K Pillutla, L Liu, J Thickstun, S Welleck, S Swayamdipta, R Zellers, S Oh, ...
arXiv preprint arXiv:2212.14578, 2022
22022
Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism
K Pillutla, Y Laguel, J Malick, Z Harchaoui
International Workshop on Federated Learning: Recent Advances and New Challenges, 2022
12022
Modified Gauss-Newton Algorithms under Noise
K Pillutla, V Roulet, S Kakade, Z Harchaoui
arXiv preprint arXiv:2305.10634, 2023
2023
Federated learning with superquantile aggregation for heterogeneous data
K Pillutla, Y Laguel, J Malick, Z Harchaoui
Machine Learning, 1-68, 2023
2023
Influence Diagnostics under Self-concordance
J Fisher, L Liu, K Pillutla, Y Choi, Z Harchaoui
International Conference on Artificial Intelligence and Statistics, 10028-10076, 2023
2023
Stochastic Optimization for Spectral Risk Measures
R Mehta, V Roulet, K Pillutla, L Liu, Z Harchaoui
International Conference on Artificial Intelligence and Statistics, 10112-10159, 2023
2023
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20