Model-based reinforcement learning for atari L Kaiser, M Babaeizadeh, P Milos, B Osinski, RH Campbell, ... arXiv preprint arXiv:1903.00374, 2019 | 960 | 2019 |
Uncertainty-sensitive learning and planning with ensembles P Miłoś, Ł Kuciński, K Czechowski, P Kozakowski, M Klimek arXiv preprint arXiv:1912.09996, 2019 | 8 | 2019 |
Q-value weighted regression: Reinforcement learning with limited data P Kozakowski, L Kaiser, H Michalewski, A Mohiuddin, K Kańska 2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022 | 5 | 2022 |
Planning and learning using adaptive entropy tree search P Kozakowski, M Pacek, P Miloś 2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022 | 3 | 2022 |
Molecule-edit templates for efficient and accurate retrosynthesis prediction M Sacha, M Sadowski, P Kozakowski, R van Workum, S Jastrzębski arXiv preprint arXiv:2310.07313, 2023 | 2 | 2023 |
Structure and randomness in planning and reinforcement learning K Czechowski, P Januszewski, P Kozakowski, Ł Kuciński, P Miłoś 2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021 | 2 | 2021 |
: Stochastic Time Series Modeling With Transformer Ł Kuciński, W Drzewakowski, M Olko, P Kozakowski, Ł Maziarka, ... arXiv preprint arXiv:2403.05713, 2024 | | 2024 |
RL: Generic reinforcement learning codebase in TensorFlow BM Li, A Cowen-Rivers, P Kozakowski, D Tao, SR Kamalakara, ... Journal of Open Source Software 4 (42), 1524, 2019 | | 2019 |
Forecasting Deep Learning Dynamics with Applications to Hyperparameter Tuning P Kozakowski, Ł Kaiser, A Mohiuddin | | |