Follow
Manisha Kulkarni
Manisha Kulkarni
Professor of Mathematics, IIIT, Bangalore
Verified email at iiitb.ac.in
Title
Cited by
Cited by
Year
On the diophantine equation x (x+ 1)(x+ 2)…(x+(m− 1))= g (y)
M Kulkarni, B Sury
Indagationes Mathematicae 14 (1), 35-44, 2003
272003
The Diophantine equation
YF Bilu, M Kulkarni, B Sury
Acta Arithmetica 113, 303-308, 2004
202004
Diophantine equations with Bernoulli polynomial
M Kulkarni, B Sury
122005
A class of Diophantine equations involving Bernoulli polynomials
M Kulkami, B Sury
102005
Locally potentially equivalent two dimensional Galois representations and Frobenius fields of elliptic curves
M Kulkarni, VM Patankar, CS Rajan
Journal of Number Theory 164, 87-102, 2016
72016
l-Class groups of cyclic extensions of prime degree l
M Kulkarni, D Majumdar, B Sury
arXiv preprint arXiv:1404.1813, 2014
62014
Quadratic Factors of
M Kulkarni, P Müller, B Sury
arXiv preprint math/0610549, 2006
62006
On the Diophantine equation 1+ x+ x2 2!+...+ xn n!= g (y)
M Kulkarni, B Sury
Diophantine equations 20, 121-134, 2005
52005
Solutions of cubic equations in quadratic fields
K Chakraborty, MV Kulkarni
Acta Arithmetica 89 (1), 37-43, 1999
31999
On the Diophantine equation
M Kulkarni, B Sury
Diophantine equations, 121-134, 0
3
On the Diophantine equation 1+ x+ x2 2!+···+ xn n!= g (y), Diophantine equations, vol. 20
M Kulkarni, B Sury
Tata Institute of Fundamental Research, Mumbai, 121-134, 2008
22008
On the vanishing of cubic recurrences
M Kulkarni, B Sury
Mathematical Reports of the Academy of Sciences 24 (2), 72-76, 2002
22002
x+ x 2 2!+…+ xnn!= g (y)
M Kulkarni, B Sury
Diophantine equations, 121-134, 0
2
Journal of the Ramanujan Mathematical Society
M Kulkarni, D Majumdar, B Sury
Journal of the Ramanujan Mathematical Society 30 (4), 413-454, 2015
2015
ELLIPTIC CURVES AND THEIR FROBENIUS FIELDS
M KULKARNI, VM PATANKAR
arXiv preprint arXiv:1403.5635, 2014
2014
On diophantine equations of the form
M Kulkarni, B Sury
Proceedings-Mathematical Sciences 121 (3), 245-247, 2011
2011
Quadratic factors of f (X)-g (Y) in any characteristic
M Kulkami, P Muller, B Sury
2007
Quadratic factors of f (X)-g (Y)
M Kulkami, P Muller, B Sury
2007
On the Diophantine Equation 1+ x+ x2
M Kulkarni, B Sury
2007
Quadratic factors of f (X)− g (Y) in odd characteristic
M Kulkarni, B Sury
2006
The system can't perform the operation now. Try again later.
Articles 1–20