A complete set of covariants of the four qubit system E Briand, JG Luque, JY Thibon Journal of Physics A: Mathematical and General 36 (38), 9915, 2003 | 83 | 2003 |

The moduli space of three-qutrit states E Briand, JG Luque, JY Thibon, F Verstraete Journal of mathematical physics 45, 4855, 2004 | 78 | 2004 |

The stability of the Kronecker product of Schur functions E Briand, R Orellana, M Rosas FPSAC 2010 (Formal Power Series and Algebraic Combinatorics), 557-568, 2010 | 70 | 2010 |

The stability of the Kronecker product of Schur functions E Briand, R Orellana, M Rosas Journal of Algebra 331 (1), 11-27, 2011 | 69 | 2011 |

Reduced Kronecker Coefficients and Counter–Examples to Mulmuley’s Strong Saturation Conjecture SH E Briand, R Orellana, M Rosas Computational Complexity 18 (4), 577-600, 2009 | 51 | 2009 |

When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials? E Briand Beiträge zur Algebra und Geometrie 45 (2), 353-368, 2004 | 47 | 2004 |

Coherent-vortex dynamics in large-eddy simulationsof turbulence M Lesieur, P Bégou, E Briand, A Danet, F Delcayre, JL Aider Journal of turbulence 4 (1), 016, 2003 | 42 | 2003 |

Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract) E Briand, R Orellana, M Rosas FPSAC 2009 (Formal Power Series and Algebraic Combinatorics), 241-252, 2009 | 29* | 2009 |

Milne’s volume function and vector symmetric polynomials E Briand, M Rosas Journal of Symbolic Computation 44 (5), 583-590, 2009 | 22 | 2009 |

Polynômes multisymétriques E Briand Université de Rennes 1, 2002 | 19 | 2002 |

Rectangular symmetries for coefficients of symmetric functions E Briand, R Orellana, M Rosas arXiv preprint arXiv:1410.8017, 2014 | 15 | 2014 |

Covariants Vanishing on Totally Decomposable Forms E Briand Liaison, Schottky Problem and Invariant Theory, 237-256, 2010 | 15 | 2010 |

Equations, inequations and inequalities characterizing the configurations of two real projective conics E Briand Applicable Algebra in Engineering, Communication and Computing 18 (1), 21-52, 2007 | 15 | 2007 |

Multivariate Newton sums: identities and generating functions E Briand, L Gonzalez-Vega Communications in Algebra 30 (9), 4527-4547, 2002 | 15 | 2002 |

Normally ordered forms of powers of differential operators and their combinatorics E Briand, SA Lopes, M Rosas Journal of Pure and Applied Algebra 224 (8), 106312, 2020 | 7 | 2020 |

The 144 symmetries of the Littlewood-Richardson coefficients of E Briand, M Rosas arXiv preprint arXiv:2004.04995, 2020 | 5 | 2020 |

On the growth of the Kronecker coefficients E Briand, A Rattan, M Rosas arXiv preprint arXiv:1607.02887, 2016 | 4 | 2016 |

Commutation and normal ordering for operators on symmetric functions E Briand, PRW McNamara, R Orellana, M Rosas arXiv preprint arXiv:1509.02581, 2015 | 4 | 2015 |

THE CHAMBER COMPLEX FOR THE LITTLEWOOD-RICHARDSON COEFFICIENTS OF GL4. E Briand, M Rosas, S Trandafir preparation, 2019 | 3 | 2019 |

Brill’s equations of the subvariety of the products of linear forms E Briand EACA 2004 (Encuentros de Álgebra Computacional y Aplicaciones), 59-63, 2004 | 3 | 2004 |