Prati
Krishnateja Killamsetty
Naslov
Citirano
Citirano
Godina
Glister: Generalization based data subset selection for efficient and robust learning
K Killamsetty, D Sivasubramanian, G Ramakrishnan, R Iyer
Proceedings of the AAAI Conference on Artificial Intelligence 35 (9), 8110-8118, 2021
912021
Grad-match: Gradient matching based data subset selection for efficient deep model training
K Killamsetty, S Durga, G Ramakrishnan, A De, R Iyer
International Conference on Machine Learning, 5464-5474, 2021
822021
Similar: Submodular information measures based active learning in realistic scenarios
S Kothawade, N Beck, K Killamsetty, R Iyer
Advances in Neural Information Processing Systems 34, 18685-18697, 2021
442021
Retrieve: Coreset selection for efficient and robust semi-supervised learning
K Killamsetty, X Zhao, F Chen, R Iyer
Advances in Neural Information Processing Systems 34, 14488-14501, 2021
312021
Gcr: Gradient coreset based replay buffer selection for continual learning
R Tiwari, K Killamsetty, R Iyer, P Shenoy
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
242022
Semi-supervised data programming with subset selection
A Maheshwari, O Chatterjee, K Killamsetty, G Ramakrishnan, R Iyer
arXiv preprint arXiv:2008.09887, 2020
14*2020
How Out-of-Distribution Data Hurts Semi-Supervised Learning
X Zhao, K Krishnateja, R Iyer, F Chen
IEEE International Conference On Data Mining (ICDM) 22, 763-772, 2022
10*2022
A Nested Bi-level Optimization Framework for Robust Few Shot Learning
K Killamsetty, C Li, C Zhao, F Chen, R Iyer
Proceedings of the AAAI Conference on Artificial Intelligence 36 (7), 7176-7184, 2022
9*2022
Automata: Gradient based data subset selection for compute-efficient hyper-parameter tuning
K Killamsetty, GS Abhishek, A Lnu, G Ramakrishnan, A Evfimievski, ...
Advances in Neural Information Processing Systems 35, 28721-28733, 2022
72022
Orient: Submodular mutual information measures for data subset selection under distribution shift
A Karanam, K Killamsetty, H Kokel, R Iyer
Advances in neural information processing systems 35, 31796-31808, 2022
32022
A data subset selection framework for efficient hyper-parameter tuning and automatic machine learning
S Visalpara, K Killamsetty, R Iyer
ICML Workshops, 2021
32021
Learning to Robustly Aggregate Labeling Functions for Semi-supervised Data Programming
A Maheshwari, K Killamsetty, G Ramakrishnan, R Iyer, M Danilevsky, ...
arXiv preprint arXiv:2109.11410, 2021
22021
INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of Large Language Models
HK Renduchintala, K Killamsetty, S Bhatia, M Aggarwal, G Ramakrishnan, ...
arXiv preprint arXiv:2305.06677, 2023
2023
INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of Large Language Models
H Kowndinya Renduchintala, K Killamsetty, S Bhatia, M Aggarwal, ...
arXiv e-prints, arXiv: 2305.06677, 2023
2023
MILO: Model-Agnostic Subset Selection Framework for Efficient Model Training and Tuning
K Killamsetty, AV Evfimievski, T Pedapati, K Kate, L Popa, R Iyer
arXiv preprint arXiv:2301.13287, 2023
2023
Using Informative Data Subsets for Efficient Training of Large Language Models: An Initial Study
HK Renduchintala, K Killamsetty, S Bhatia, M Aggarwal, G Ramakrishnan, ...
The Second Workshop on Efficient Natural Language and Speech Processing …, 0
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–16