Streaming variational bayes T Broderick, N Boyd, A Wibisono, AC Wilson, MI Jordan Advances in neural information processing systems 26, 2013 | 338 | 2013 |
Coresets for scalable Bayesian logistic regression J Huggins, T Campbell, T Broderick Advances in Neural Information Processing Systems 29, 2016 | 174 | 2016 |
Transparency and reproducibility in artificial intelligence B Haibe-Kains, GA Adam, A Hosny, F Khodakarami, L Waldron, B Wang, ... Nature 586 (7829), E14-E16, 2020 | 150 | 2020 |
Ellipticity of dark matter haloes with galaxy–galaxy weak lensing R Mandelbaum, CM Hirata, T Broderick, U Seljak, J Brinkmann Monthly Notices of the Royal Astronomical Society 370 (2), 1008-1024, 2006 | 137 | 2006 |
Beta processes, stick-breaking and power laws T Broderick, MI Jordan, J Pitman Bayesian analysis 7 (2), 439-476, 2012 | 101 | 2012 |
MAD-Bayes: MAP-based asymptotic derivations from Bayes T Broderick, B Kulis, M Jordan International Conference on Machine Learning, 226-234, 2013 | 98 | 2013 |
Bayesian coreset construction via greedy iterative geodesic ascent T Campbell, T Broderick International Conference on Machine Learning, 698-706, 2018 | 87 | 2018 |
Automated scalable Bayesian inference via Hilbert coresets T Campbell, T Broderick The Journal of Machine Learning Research 20 (1), 551-588, 2019 | 81 | 2019 |
Faster solutions of the inverse pairwise Ising problem T Broderick, M Dudik, G Tkacik, RE Schapire, W Bialek arXiv preprint arXiv:0712.2437, 2007 | 77 | 2007 |
Faster solutions of the inverse pairwise Ising problem T Broderick, M Dudik, G Tkacik, RE Schapire, W Bialek arXiv preprint arXiv:0712.2437, 2007 | 77 | 2007 |
Linear response methods for accurate covariance estimates from mean field variational Bayes RJ Giordano, T Broderick, MI Jordan Advances in Neural Information Processing Systems 28, 2015 | 76 | 2015 |
Covariances, robustness and variational bayes R Giordano, T Broderick, MI Jordan Journal of machine learning research 19 (51), 2018 | 75 | 2018 |
Combinatorial clustering and the beta negative binomial process T Broderick, L Mackey, J Paisley, MI Jordan IEEE transactions on pattern analysis and machine intelligence 37 (2), 290-306, 2014 | 75 | 2014 |
Edge-exchangeable graphs and sparsity D Cai, T Campbell, T Broderick Advances in Neural Information Processing Systems 29, 2016 | 73 | 2016 |
Boosting variational inference F Guo, X Wang, K Fan, T Broderick, DB Dunson arXiv preprint arXiv:1611.05559, 2016 | 65 | 2016 |
Feature allocations, probability functions, and paintboxes T Broderick, J Pitman, MI Jordan Bayesian Analysis 8 (4), 801-836, 2013 | 64 | 2013 |
A swiss army infinitesimal jackknife R Giordano, W Stephenson, R Liu, M Jordan, T Broderick The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 57 | 2019 |
Redshift accuracy requirements for future supernova and number count surveys D Huterer, A Kim, LM Krauss, T Broderick The Astrophysical Journal 615 (2), 595, 2004 | 50 | 2004 |
Real-time semiparametric regression J Luts, T Broderick, MP Wand Journal of Computational and Graphical Statistics 23 (3), 589-615, 2014 | 49 | 2014 |
Cluster and feature modeling from combinatorial stochastic processes T Broderick, MI Jordan, J Pitman Statistical Science 28 (3), 289-312, 2013 | 44 | 2013 |