Towards a rigorous science of interpretable machine learning F Doshi-Velez, B Kim arXiv preprint arXiv:1702.08608, 2017 | 4618 | 2017 |
Do no harm: a roadmap for responsible machine learning for health care J Wiens, S Saria, M Sendak, M Ghassemi, VX Liu, F Doshi-Velez, K Jung, ... Nature medicine 25 (9), 1337-1340, 2019 | 756 | 2019 |
Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients A Ross, F Doshi-Velez Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 752 | 2018 |
Right for the right reasons: Training differentiable models by constraining their explanations AS Ross, MC Hughes, F Doshi-Velez arXiv preprint arXiv:1703.03717, 2017 | 621 | 2017 |
Accountability of AI under the law: The role of explanation F Doshi-Velez, M Kortz, R Budish, C Bavitz, S Gershman, D O'Brien, ... arXiv preprint arXiv:1711.01134, 2017 | 540 | 2017 |
Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis F Doshi-Velez, Y Ge, I Kohane Pediatrics 133 (1), e54-e63, 2014 | 510 | 2014 |
Guidelines for reinforcement learning in healthcare O Gottesman, F Johansson, M Komorowski, A Faisal, D Sontag, ... Nature medicine 25 (1), 16-18, 2019 | 455 | 2019 |
Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning S Depeweg, JM Hernandez-Lobato, F Doshi-Velez, S Udluft International conference on machine learning, 1184-1193, 2018 | 436 | 2018 |
A bayesian framework for learning rule sets for interpretable classification T Wang, C Rudin, F Doshi-Velez, Y Liu, E Klampfl, P MacNeille Journal of Machine Learning Research 18 (70), 1-37, 2017 | 322 | 2017 |
The myth of generalisability in clinical research and machine learning in health care J Futoma, M Simons, T Panch, F Doshi-Velez, LA Celi The Lancet Digital Health 2 (9), e489-e492, 2020 | 312 | 2020 |
Beyond sparsity: Tree regularization of deep models for interpretability M Wu, M Hughes, S Parbhoo, M Zazzi, V Roth, F Doshi-Velez Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 312 | 2018 |
Unfolding physiological state: Mortality modelling in intensive care units M Ghassemi, T Naumann, F Doshi-Velez, N Brimmer, R Joshi, ... Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014 | 287 | 2014 |
How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation M Narayanan, E Chen, J He, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1802.00682, 2018 | 272 | 2018 |
An evaluation of the human-interpretability of explanation I Lage, E Chen, J He, M Narayanan, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1902.00006, 2019 | 231 | 2019 |
Explainable reinforcement learning via reward decomposition Z Juozapaitis, A Koul, A Fern, M Erwig, F Doshi-Velez IJCAI/ECAI Workshop on explainable artificial intelligence, 2019 | 228 | 2019 |
Considerations for evaluation and generalization in interpretable machine learning F Doshi-Velez, B Kim Explainable and interpretable models in computer vision and machine learning …, 2018 | 212 | 2018 |
A Bayesian nonparametric approach to modeling motion patterns J Joseph, F Doshi-Velez, AS Huang, N Roy Autonomous Robots 31, 383-400, 2011 | 208 | 2011 |
Gathering strength, gathering storms: The one hundred year study on artificial intelligence (AI100) 2021 study panel report ML Littman, I Ajunwa, G Berger, C Boutilier, M Currie, F Doshi-Velez, ... arXiv preprint arXiv:2210.15767, 2022 | 205 | 2022 |
How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection M Jacobs, MF Pradier, TH McCoy Jr, RH Perlis, F Doshi-Velez, KZ Gajos Translational psychiatry 11 (1), 108, 2021 | 204 | 2021 |
Learning and policy search in stochastic dynamical systems with bayesian neural networks S Depeweg, JM Hernández-Lobato, F Doshi-Velez, S Udluft arXiv preprint arXiv:1605.07127, 2016 | 199 | 2016 |