A posteriori error analysis of two-step backward differentiation formula finite element approximation for parabolic interface problems J Sen Gupta, RK Sinha, GMM Reddy, J Jain Journal of Scientific Computing 69, 406-429, 2016 | 16 | 2016 |
New interpolation error estimates and a posteriori error analysis for linear parabolic interface problems J Sen Gupta, RK Sinha, GMM Reddy, J Jain Numerical Methods for Partial Differential Equations 33 (2), 570-598, 2017 | 13 | 2017 |
Ritz–Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations GMM Reddy, RK Sinha IMA Journal of Numerical Analysis 35 (1), 341-371, 2015 | 13 | 2015 |
A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations GMM Reddy, RK Sinha, JA Cuminato Journal of Scientific Computing 79, 414-441, 2019 | 11 | 2019 |
An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem GMM Reddy, M Vynnycky, JA Cuminato Journal of Computational and Applied Mathematics 349, 21-40, 2019 | 8 | 2019 |
An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy–Stefan problem GMM Reddy, P Nanda, M Vynnycky, JA Cuminato Computational and Applied Mathematics 40, 1-26, 2021 | 7 | 2021 |
On efficient reconstruction of boundary data with optimal placement of the source points in the MFS: application to inverse Stefan problems GMM Reddy, M Vynnycky, JA Cuminato Inverse Problems in Science and Engineering 26 (9), 1249-1279, 2018 | 7 | 2018 |
On the Crank-Nicolson anisotropic a posteriori error analysis for parabolic integro-differential equations GM Reddy, R Sinha Mathematics of Computation 85 (301), 2365-2390, 2016 | 7 | 2016 |
A posteriori error analysis of the Crank–Nicolson finite element method for linear parabolic interface problems: A reconstruction approach JS Gupta, RK Sinha, GMM Reddy, J Jain Journal of Computational and Applied Mathematics 340, 173-190, 2018 | 5 | 2018 |
The backward euler anisotropic a posteriori error analysis for parabolic integro‐differential equations GMM Reddy, RK Sinha Numerical Methods for Partial Differential Equations 32 (5), 1309-1330, 2016 | 5 | 2016 |
Fully discrete a posteriori error estimates for parabolic integro-differential equations using the two-step backward differentiation formula GMM Reddy BIT Numerical Mathematics 62 (1), 251-277, 2022 | 1 | 2022 |
Efficient numerical solution of boundary identification problems: MFS with adaptive stochastic optimization GMM Reddy, P Nanda, M Vynnycky, JA Cuminato Applied Mathematics and Computation 409, 126402, 2021 | 1 | 2021 |
On the Effect of Control-Point Spacing on the Multisolution Phenomenon in the P3P Problem M Vynnycky, GMM Reddy Mathematical Problems in Engineering 2018, 2018 | 1 | 2018 |
Anisotropic a Posteriori Error Analysis for the Two-Step Backward Differentiation Formula for Parabolic Integro-Differential Equation N Shravani, GMM Reddy, AK Pani Journal of Scientific Computing 93 (1), 26, 2022 | | 2022 |
Inverse two-phase nonlinear Stefan and Cauchy-Stefan problems: A phase-wise approach P Nanda, GMM Reddy, M Vynnycky Computers & Mathematics with Applications 123, 216-226, 2022 | | 2022 |
Efficient numerical solution of one‐phase linear inverse Stefan and Cauchy–Stefan problems in two dimensions: A posteriori error control P Nanda, GMM Reddy Studies in Applied Mathematics 148 (4), 1563-1585, 2022 | | 2022 |
A Compact FEM Implementation for Parabolic Integro-Differential Equations in 2D GMM Reddy, AB Seitenfuss, DO Medeiros, L Meacci, M Assunção, ... Algorithms 13 (10), 242, 2020 | | 2020 |
A posteriori Error Analysis of Finite Element methods for Parabolic Integro-differential Equations G Reddy | | 2014 |
Case Study: Haemodialyser Performance AS Silva, BC Barroso, FS Silva, GMM Reddy | | |