Wing rotation and the aerodynamic basis of insect flight MH Dickinson, FO Lehmann, SP Sane science 284 (5422), 1954-1960, 1999 | 3377 | 1999 |
How animals move: an integrative view MH Dickinson, CT Farley, RJ Full, MAR Koehl, R Kram, S Lehman science 288 (5463), 100-106, 2000 | 1930 | 2000 |
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight SP Sane, MH Dickinson Journal of experimental biology 205 (8), 1087-1096, 2002 | 956 | 2002 |
High-throughput ethomics in large groups of Drosophila K Branson, AA Robie, J Bender, P Perona, MH Dickinson Nature methods 6 (6), 451-457, 2009 | 895 | 2009 |
The control of flight force by a flapping wing: lift and drag production SP Sane, MH Dickinson Journal of experimental biology 204 (15), 2607-2626, 2001 | 884 | 2001 |
Spanwise flow and the attachment of the leading-edge vortex on insect wings JM Birch, MH Dickinson Nature 412 (6848), 729-733, 2001 | 881 | 2001 |
Unsteady aerodynamic performance of model wings at low Reynolds numbers MH Dickinson, KG Götz Journal of experimental biology 174 (1), 45-64, 1993 | 860 | 1993 |
The aerodynamics of free-flight maneuvers in Drosophila SN Fry, R Sayaman, MH Dickinson Science 300 (5618), 495-498, 2003 | 674 | 2003 |
Unsteady forces and flows in low Reynolds number hovering flight:two-dimensional computations vs robotic wing experiments ZJ Wang, JM Birch, MH Dickinson Journal of Experimental Biology 207 (3), 449-460, 2004 | 667 | 2004 |
Rotational accelerations stabilize leading edge vortices on revolving fly wings D Lentink, MH Dickinson Journal of experimental biology 212 (16), 2705-2719, 2009 | 579 | 2009 |
Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers JM Birch, WB Dickson, MH Dickinson Journal of Experimental Biology 207 (7), 1063-1072, 2004 | 489 | 2004 |
The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight JM Birch, MH Dickinson Journal of experimental biology 206 (13), 2257-2272, 2003 | 463 | 2003 |
Active flight increases the gain of visual motion processing in Drosophila G Maimon, AD Straw, MH Dickinson Nature neuroscience 13 (3), 393-399, 2010 | 459 | 2010 |
A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons DJ Linden, MH Dickinson, M Smeyne, JA Connor Neuron 7 (1), 81-89, 1991 | 452 | 1991 |
The aerodynamics of hovering flight in Drosophila SN Fry, R Sayaman, MH Dickinson Journal of Experimental Biology 208 (12), 2303-2318, 2005 | 426 | 2005 |
The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster LF Tammero, MH Dickinson Journal of Experimental Biology 205 (3), 327-343, 2002 | 370 | 2002 |
Wing transmission for a micromechanical flying insect RS Fearing, KH Chiang, MH Dickinson, DL Pick, M Sitti, J Yan Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference …, 2000 | 352 | 2000 |
The Changes in Power Requirements and Muscle Efficiency During Elevated Force Production in the Fruit Fly Drosophila Melanogaster FO Lehmann, MH Dickinson Journal of Experimental Biology 200 (7), 1133-1143, 1997 | 349 | 1997 |
Leading-edge vortices elevate lift of autorotating plant seeds D Lentink, WB Dickson, JL Van Leeuwen, MH Dickinson Science 324 (5933), 1438-1440, 2009 | 345 | 2009 |
Mosquitoes use vision to associate odor plumes with thermal targets F Van Breugel, J Riffell, A Fairhall, MH Dickinson Current Biology 25 (16), 2123-2129, 2015 | 331 | 2015 |