Decentralized stochastic optimization and gossip algorithms with compressed communication A Koloskova, SU Stich, M Jaggi ICML 2019 - Proceedings of the 36th International Conference on Machine Learning, 2019 | 339 | 2019 |
A unified theory of decentralized sgd with changing topology and local updates A Koloskova, N Loizou, S Boreiri, M Jaggi, SU Stich ICML 2020, 2020 | 235 | 2020 |
Decentralized deep learning with arbitrary communication compression A Koloskova, T Lin, SU Stich, M Jaggi ICLR 2020, 2019 | 149 | 2019 |
A linearly convergent algorithm for decentralized optimization: Sending less bits for free! D Kovalev, A Koloskova, M Jaggi, P Richtarik, S Stich International Conference on Artificial Intelligence and Statistics, 4087-4095, 2021 | 44 | 2021 |
Consensus control for decentralized deep learning L Kong, T Lin, A Koloskova, M Jaggi, SU Stich ICML 2021, 2021 | 37 | 2021 |
An improved analysis of gradient tracking for decentralized machine learning A Koloskova, T Lin, SU Stich Advances in Neural Information Processing Systems 34, 11422-11435, 2021 | 31 | 2021 |
Relaysum for decentralized deep learning on heterogeneous data T Vogels, L He, A Koloskova, SP Karimireddy, T Lin, SU Stich, M Jaggi Advances in Neural Information Processing Systems 34, 28004-28015, 2021 | 23 | 2021 |
Decentralized local stochastic extra-gradient for variational inequalities A Beznosikov, P Dvurechensky, A Koloskova, V Samokhin, SU Stich, ... arXiv preprint arXiv:2106.08315, 2021 | 19 | 2021 |
Efficient greedy coordinate descent for composite problems SP Karimireddy, A Koloskova, SU Stich, M Jaggi The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 19 | 2019 |
Data-heterogeneity-aware mixing for decentralized learning Y Dandi, A Koloskova, M Jaggi, SU Stich arXiv preprint arXiv:2204.06477, 2022 | 6 | 2022 |
Sharper convergence guarantees for asynchronous sgd for distributed and federated learning A Koloskova, SU Stich, M Jaggi NeurIPS 2022, 2022 | 5 | 2022 |
Decentralized Gradient Tracking with Local Steps Y Liu, T Lin, A Koloskova, SU Stich arXiv preprint arXiv:2301.01313, 2023 | 1 | 2023 |
Decentralized Stochastic Optimization with Client Sampling Z Liu, A Koloskova, M Jaggi, T Lin OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 0 | | |