Follow
Misha Khalman
Misha Khalman
Google DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
6232023
Slic-hf: Sequence likelihood calibration with human feedback
Y Zhao, R Joshi, T Liu, M Khalman, M Saleh, PJ Liu
arXiv preprint arXiv:2305.10425, 2023
812023
Calibrating sequence likelihood improves conditional language generation
Y Zhao, M Khalman, R Joshi, S Narayan, M Saleh, PJ Liu
The Eleventh International Conference on Learning Representations, 2022
702022
Statistical rejection sampling improves preference optimization
T Liu, Y Zhao, R Joshi, M Khalman, M Saleh, PJ Liu, J Liu
arXiv preprint arXiv:2309.06657, 2023
512023
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
302024
ForumSum: A multi-speaker conversation summarization dataset
M Khalman, Y Zhao, M Saleh
Findings of the Association for Computational Linguistics: EMNLP 2021, 4592-4599, 2021
202021
Direct language model alignment from online ai feedback
S Guo, B Zhang, T Liu, T Liu, M Khalman, F Llinares, A Rame, T Mesnard, ...
arXiv preprint arXiv:2402.04792, 2024
102024
LiPO: Listwise Preference Optimization through Learning-to-Rank
T Liu, Z Qin, J Wu, J Shen, M Khalman, R Joshi, Y Zhao, M Saleh, ...
arXiv preprint arXiv:2402.01878, 2024
72024
Calibrating Likelihoods towards Consistency in Summarization Models
P Zablotskaia, M Khalman, R Joshi, LB Soares, S Jakobovits, J Maynez, ...
arXiv preprint arXiv:2310.08764, 2023
12023
The system can't perform the operation now. Try again later.
Articles 1–9