Follow
Sejun Park
Sejun Park
Assistant Professor, Korea University
Verified email at korea.ac.kr
Title
Cited by
Cited by
Year
Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning
J Kim, Y Hur, S Park, E Yang, SJ Hwang, J Shin
Advances in neural information processing systems 33, 14567-14579, 2020
1902020
Layer-adaptive sparsity for the magnitude-based pruning
J Lee, S Park, S Mo, S Ahn, J Shin
arXiv preprint arXiv:2010.07611, 2020
1662020
Minimum width for universal approximation
S Park, C Yun, J Lee, J Shin
arXiv preprint arXiv:2006.08859, 2020
1482020
Lookahead: A far-sighted alternative of magnitude-based pruning
S Park, J Lee, S Mo, J Shin
arXiv preprint arXiv:2002.04809, 2020
1072020
Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability
S Park, D Deka, M Chertkov
Power Systems Computation Conference (PSCC), 2018, 2018
902018
Smoothmix: Training confidence-calibrated smoothed classifiers for certified robustness
J Jeong, S Park, M Kim, HC Lee, DG Kim, J Shin
Advances in Neural Information Processing Systems 34, 30153-30168, 2021
522021
Neural networks efficiently learn low-dimensional representations with sgd
A Mousavi-Hosseini, S Park, M Girotti, I Mitliagkas, MA Erdogdu
arXiv preprint arXiv:2209.14863, 2022
502022
Learning bounds for risk-sensitive learning
J Lee, S Park, J Shin
Advances in Neural Information Processing Systems 33, 13867-13879, 2020
502020
Learning with end-users in distribution grids: Topology and parameter estimation
S Park, D Deka, S Backhaus, M Chertkov
IEEE Transactions on Control of Network Systems 7 (3), 1428-1440, 2020
402020
Provable memorization via deep neural networks using sub-linear parameters
S Park, J Lee, C Yun, J Shin
Conference on Learning Theory, 3627-3661, 2021
322021
Max-product belief propagation for linear programming: applications to combinatorial optimization
S Park, J Shin
arXiv preprint arXiv:1412.4972, 2014
132014
Guiding Energy-based Models via Contrastive Latent Variables
H Lee, J Jeong, S Park, J Shin
arXiv preprint arXiv:2303.03023, 2023
122023
Generalization Bounds for Stochastic Gradient Descent via Localized -Covers
S Park, U Simsekli, MA Erdogdu
Advances in Neural Information Processing Systems 35, 2790-2802, 2022
102022
A deeper look at the layerwise sparsity of magnitude-based pruning
J Lee, S Park, S Mo, S Ahn, J Shin
arXiv preprint arXiv:2010.07611 2 (3), 2020
92020
Rapid mixing Swendsen-Wang sampler for stochastic partitioned attractive models
S Park, Y Jang, A Galanis, J Shin, D Stefankovic, E Vigoda
Artificial Intelligence and Statistics, 440-449, 2017
92017
Minimum weight perfect matching via blossom belief propagation
SS Ahn, S Park, M Chertkov, J Shin
Advances in neural information processing systems 28, 2015
82015
Convergence and correctness of max-product belief propagation for linear programming
S Park, J Shin
SIAM Journal on Discrete Mathematics 31 (3), 2228-2246, 2017
72017
Spectral approximate inference
S Park, E Yang, SY Yun, J Shin
International Conference on Machine Learning, 5052-5061, 2019
52019
Maximum weight matching using odd-sized cycles: Max-product belief propagation and half-integrality
S Ahn, M Chertkov, AE Gelfand, S Park, J Shin
IEEE Transactions on Information Theory 64 (3), 1471-1480, 2017
32017
Practical message-passing framework for large-scale combinatorial optimization
I Cho, S Park, S Park, D Han, J Shin
2015 IEEE international conference on big data (Big Data), 24-31, 2015
32015
The system can't perform the operation now. Try again later.
Articles 1–20