Two dimensional water waves in holomorphic coordinates JK Hunter, M Ifrim, D Tataru Communications in Mathematical Physics 346 (2), 483-552, 2016 | 164 | 2016 |

Two dimensional water waves in holomorphic coordinates II: global solutions M Ifrim, D Tataru arXiv preprint arXiv:1404.7583, 2014 | 140 | 2014 |

The lifespan of small data solutions in two dimensional capillary water waves M Ifrim, D Tataru Archive for Rational Mechanics and Analysis 225, 1279-1346, 2017 | 102 | 2017 |

Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension M Ifrim, D Tataru Nonlinearity 28 (8), 2661, 2015 | 102 | 2015 |

Long time solutions for a Burgers-Hilbert equation via a modified energy method J Hunter, M Ifrim, D Tataru, TK Wong Proceedings of the American Mathematical Society 143 (8), 3407-3412, 2015 | 83 | 2015 |

Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation M Ifrim, D Tataru ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE 52 (2), 297-335, 2019 | 63 | 2019 |

Two-dimensional gravity water waves with constant vorticity, I: Cubic lifespan M Ifrim, D Tataru Analysis & PDE 12 (4), 903-967, 2018 | 46 | 2018 |

Enhanced life span of smooth solutions of a Burgers--Hilbert equation JK Hunter, M Ifrim SIAM Journal on Mathematical Analysis 44 (3), 2039-2052, 2012 | 44 | 2012 |

Finite depth gravity water waves in holomorphic coordinates B Harrop-Griffiths, M Ifrim, D Tataru Annals of PDE 3, 1-102, 2017 | 41 | 2017 |

Local well-posedness for quasi-linear problems: A primer M Ifrim, D Tataru Bulletin of the American Mathematical Society 60 (2), 167-194, 2023 | 35 | 2023 |

Almost global well-posedness for quasilinear strongly coupled wave-Klein-Gordon systems in two space dimensions M Ifrim, A Stingo arXiv preprint arXiv:1910.12673, 2019 | 22 | 2019 |

The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach M Ifrim, D Tataru Annales de l'Institut Henri Poincaré C, 2023 | 18 | 2023 |

The lifespan of small data solutions to the KP-I B Harrop-Griffiths, M Ifrim, D Tataru International Mathematics Research Notices 2017 (1), 1-28, 2016 | 15 | 2016 |

The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion MM Disconzi, M Ifrim, D Tataru Archive for rational mechanics and analysis 245 (1), 127-182, 2022 | 14 | 2022 |

Two dimensional gravity waves at low regularity I: Energy estimates A Ai, M Ifrim, D Tataru arXiv preprint arXiv:1910.05323, 2019 | 14 | 2019 |

The NLS approximation for two dimensional deep gravity waves M Ifrim, D Tataru Science China Mathematics 62, 1101-1120, 2019 | 13 | 2019 |

Two-dimensional gravity waves at low regularity II: Global solutions A Ai, M Ifrim, D Tataru Annales de l'Institut Henri Poincaré C 39 (4), 819-884, 2022 | 12 | 2022 |

No solitary waves in 2D gravity and capillary waves in deep water M Ifrim, D Tataru Nonlinearity 33 (10), 5457, 2020 | 9 | 2020 |

A Morawetz inequality for water waves T Alazard, M Ifrim, D Tataru arXiv preprint arXiv:1806.08443, 2018 | 7 | 2018 |

A Morawetz inequality for water waves T Alazard, M Ifrim, D Tataru American Journal of Mathematics 144 (3), 607-699, 2022 | 6 | 2022 |