Justyna P Zwolak
Stability of frustration-free Hamiltonians
S Michalakis, JP Zwolak
Communications in Mathematical Physics 322, 277-302, 2013
Beyond performance metrics: Examining a decrease in students’ physics self-efficacy through a social networks lens
R Dou, E Brewe, JP Zwolak, G Potvin, EA Williams, LH Kramer
Physical Review Physics Education Research 12 (2), 020124, 2016
Machine learning techniques for state recognition and auto-tuning in quantum dots
SS Kalantre, JP Zwolak, S Ragole, X Wu, NM Zimmerman, MD Stewart Jr, ...
npj Quantum Information 5 (1), 6, 2019
Students' network integration as a predictor of persistence in introductory physics courses
JP Zwolak, R Dou, EA Williams, E Brewe
Physical Review Physics Education Research 13 (010113), 2017
Autotuning of double-dot devices in situ with machine learning
JP Zwolak, T McJunkin, SS Kalantre, JP Dodson, ER MacQuarrie, ...
Physical Review Applied 13 (3), 034075, 2020
Linking engagement and performance: The social network analysis perspective
EA Williams, JP Zwolak, R Dou, E Brewe
Physical Review Physics Education Research 15 (2), 020150, 2019
Understanding the development of interest and self-efficacy in active-learning undergraduate physics courses
R Dou, E Brewe, G Potvin, JP Zwolak, Z Hazari
International Journal of Science Education 40 (13), 1587-1605, 2018
Constructing optimal entanglement witnesses
D Chruściński, J Pytel, G Sarbicki
Physical Review A 80 (6), 062314, 2009
Constructing optimal entanglement witnesses. II. Witnessing entanglement in 4 N× 4 N systems
D Chruściński, J Pytel
Physical Review A 82 (5), 052310, 2010
Educational commitment and social networking: The power of informal networks
JP Zwolak, M Zwolak, E Brewe
Physical Review Physics Education Research 14 (1), 010131, 2018
Practitioner’s guide to social network analysis: Examining physics anxiety in an active-learning setting
R Dou, JP Zwolak
Physical Review Physics Education Research 15 (2), 020105, 2019
Optimal entanglement witnesses from generalized reduction and Robertson maps
D Chruściński, J Pytel
Journal of Physics A: Mathematical and Theoretical 44 (16), 165304, 2011
QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments
JP Zwolak, SS Kalantre, X Wu, S Ragole, JM Taylor
PLoS One 13 (10), e0205844, 2018
Toward Robust Autotuning of Noisy Quantum Dot Devices
J Ziegler, T McJunkin, ES Joseph, SS Kalantre, B Harpt, DE Savage, ...
Physical Review Applied 17 (2), 024069, 2022
Colloquium: Advances in automation of quantum dot devices control
JP Zwolak, JM Taylor
Reviews of modern physics 95 (1), 011006, 2023
Machine-learning enhanced dark soliton detection in Bose-Einstein condensates
S Guo, AR Fritsch, C Greenberg, IB Spielman, JP Zwolak
Machine Learning: Science and Technology 2 (3), 035020, 2021
Understanding Centrality: Investigating Student Outcomes within a Classroom Social Network
EA Williams, E Brewe, JP Zwolak, R Dou
Proceedings of the Physics Education Research Conference 2015, pp. 375-378, 2015
Assessing student reasoning in upper-division electricity and magnetism at Oregon State University
JP Zwolak, CA Manogue
Physical Review Special Topics - Physics Education Research 11, 020125, 2015
Ray-based framework for state identification in quantum dot devices
JP Zwolak, T McJunkin, SS Kalantre, SF Neyens, ER MacQuarrie, ...
PRX Quantum 2 (2), 020335, 2021
Network analysis approach to Likert-style surveys
RP Dalka, D Sachmpazidi, C Henderson, JP Zwolak
Physical Review Physics Education Research 18 (2), 020113, 2022
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20